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Abstract

The specific goal of this work is to present a
complete velocity map obtained by an automatic
method of velocity picking in the Semblance domain
as a sequencial nonlinear optimization problem. The
steps of the conventional velocity analysis for each
commom-mid-point section in defined in the following
way: first, normal-moveout stacking velocities are
estimated by means of Semblance function S, with the
sums along hyperbolic time trajectories producing a
map of S(vrms , t0); second, manual picking is performed
on the Semblance map for specific stacking time t0;
third, interval velocities, vint , are calculated based on
the picked smooth velocities, vrms , to construct earth
velocity time models.

The present work is multi-task as: (1) to diminish the
picking step by considering that stacking velocities are
based on an interval velocity model; (2) to search for an
interval velocity model that best explains the estimated
stacking velocities; and (3) the search is automatic,
but subject to geological, physical and mathematical
constraints, and editing.

Introduction

The geological medium is seismically represented by a
structure composed of a geometrical form, and a rock
(formation) velocity distribution of under overload pressure.
A major aim is to determine both components of this
structure as a blind inversion process, and for this several
velocity types of are described in the literature, as in Al-
Chalabi (1974). Imaging the earth’s interior is the object
of migration, as described by many authors as Etgen et al.
(2009), where the velocity distribution is a central issue.

Interval velocity, vint, the velocity between to sequential
reflections, has been a major aim in velocity analysis
(VA), since it would be directly related to the geological
formation, rock properties, stack, and migration, as
described by Buland et al. (2011) and, classically, by
Claerbout (1985) and Gazdag and Sguazzerro (1984).

Another important application of measured vp and vs
velocities is to calculate the distribution of density and
pressure in the subsurface (Sibiryakov et al., 2013).

Many velocity functions in space-time are defined

to represent the underground aiming the geological
knowledge, and among them, the relationship between
interval velocity, vint, and stack velocity, vs, play an
important role in conventional velocity analysis (CVA).
A primary goal in seismic data processing is the
determination of both these velocities, and, in CVA, vint
is calculated from the normal moveout velocities related
to a Semblance map using a mathematical model as, for
example, the Durbaum-Dix type, by considering that vs
represents the root-mean-square velocity, vrms, (Hubral
and Krey, 1980).

The classical drawback of the Semblance manual peak-
picking is that a visual interpretation of the map is
necessary, it is based on amplitude and velocity windows,
and this can be done for all common-mid-points sections
(CMPs). The present study is to propose form a partial
to complete elimination of manual peak-picking step, by
setting up a model driven strategy. Therefore, VA methods
without manual picking stand as an interesting academic
study problem.

The restrictions of the present development can be stated
as: (1st) limited to 1-D model; (2nd) use of the Durbaum-
Dix model for the relation between vint and vrms; (3rd) it
does not take into account lateral variations; and (4th)
the structural dips are not taken into account in the CMP
families (Koren and Ravve, 2006).

Method

CVA is performed by manual picking of points to construct
a curve of velocity versus time in the Semblance domain,
and sequentially for each individual CMP to cover the entire
seismic section. But, this task carries a strong subjective
decision, and it is present in the free and professional
seismic software. The result of this operation is a time-
distance map of seismic velocity, vs(t0) based on CMP
families vs(t0,xCMP). This map can be used directly for
NMO correction, stack and time migration, and it can
extended to depth migration after the transformation vrms ↔
vint, as a first approximation model for the underground
depth-and-time interval velocity (Vieira, 2011).

The aim is the solution and implementation of a velocity
analysis as a non-linear optimization problem under a priori
information and constraints, as a possibility for diminishing
the direct subjective participation of the Semblance map
interpretation. The result of the optimization process are
the root-mean square velocity, vrms, and interval velocity
vint.

Toldi (1989) has presented this problem and also an
original solution, that we denominate as Automatic
Velocity Analysis (AVA). Also, the commom-reflection-
surface (CRS) method, as described by Mann (2002) and
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Muller (1999), has a characteristic that is an automatic
search in the Semblance domain for the stack velocity, and
for single and multiple parameters. The basic reference
for the implementation of our optimization procedure was
based on Press et al. (2002), and the process steps are
shown in Figure 1.

The Semblance function is characterized as being positive
and multimodal. Besides this difficulty, the inversion
is classified as an ill-posed problem. Therefore, the
optimization needs a priori information and constraints,
that could be implicit and explicit, for its solution. The a
priori information is here defined as an initial velocity model
function, the explicit constraints defined as a parameter
taper window, and the implicit constraints limited to the
control parameter values of the model function.

Due to the ill-posed condition, we organized the
optimization problem in the Semblance domain based on
two methods: (1) A Global Search using the Simplex
method; and (2) a Local Search based on the Conjugate
Gradient method. The principle was that with a Global
Controlled Multiparametric Unconstrained algorithm we
can search for a “global” solution, and with a derivative
Local method we can search for statistical details.

Enter control parameters for the optimization loop

��

Choose the velocity constraint model

��

Calculate the complex Semblance function

��

Apply the Simplex method to locate a global minimum

��

Apply the Conjugate Gradient method for details

��

Generate the Semblance map for each CMP

��

Present the composite result of velocity profiles for all CMPs

Figure 1: Flowchart of the optimization process for each
CMP along the line.

The function object of minimization is the Semblance
function, in real form S(vs; t0), or in complex form ψ(vs; t0),
where the independent variable velocity is vs for a fixed
time t0. For this description, we follow mainly the work of
Bernabini et al. (1987).

Real Coherency Functionals

The normalized Semblance, S(vs; t0), measures the degree
of fitting of amplitudes, u, of the traces of a CMP family for
a certain stack velocity, from a first, x = xF , to a last, x = xL,
offset with Nx points, in a temporal window δ t, for a certain
reflector n, marked by the time t0 = t(n)0 , and referenced to
a point P0(x0, t0):

S(vs; t0) =

{

1
Nt

t0+δ t/2

∑
t=t0−δ t/2

1
Nx

xL

∑
x=xF

u[t(x; t0,vs)]

}2

1
Nt

t0+δ t/2

∑
t=t0−δ t/2

1
Nx

xL

∑
x=xF

{

u[t(x; t0,vs)]

}2
. (1)

S(vs; t0) admits values in the interval [0,1] irrespective of

the signal amplitude, and it quantifies the signal polarity
uniformity throughout the traces of the corrected NMO
family amplitudes u[t(x; t0,vs]. The quantity S(vs; t0) is
proportional to the energy ratio between numerator and
denominator of equation (1). In the NMO correction and
stack, the function S(vs; t0) can also be interpreted as a
function to be optimized, from where results the optimum
value of vs, where t(x; t0,vs) is given by:

t(x; t0,vs) =

√

t2
0 +

x2

v2
s
. (2)

Other t(x; t0) trajectories are known for different stack
techniques, as in Mann (2002) for the CRS stack.

In the above equations (1) and (2), the quantity vs
can interpreted as the stack velocity. The zero offset
stack section is also interpreted as the Normal Incidence
(Reflection) section. Later, in the sequel, the quantity vs
will be interpreted as the root-mean-square velocity Vrms,
and related to the interval velocity vint.

Complex Coherency Functionals

The coherency functional used for the case of complex-
valued function is the adapted analytical signal written as:

ψ(vs; t0) = S(vs; t0)+ i HS(vs; t0); (3)

where S(vs; t0) is real-valued, and HS(vs; t0) is obtained from
S(vs; t0) by application of the Hilbert transform, H, with
respect to the vs variable of the S(vs; t0) function. In the
frequency domain we write that:

HS(vs; t0) = H{S(vs; t0)}= F−1{i Sgn(ω)S(ω; t0)}, (4)

where F represent the direct, and F−1 the inverse Fourier
transform, i is the imaginary unit, ω is the angular
frequency with respect to vs, and Sgn(ω) is the sign
function in the frequency domain. The Semblance
functional, S, generalizes to S as:

S (v, t0) =

t0+δ t/2

∑
t=t0−δ t/2

∣

∣

∣

∣

∣

1
Nx

X

∑
x=x0

ψ(x, t;v)

∣

∣

∣

∣

∣

2

t0+δ t/2

∑
t=t0−δ t/2

1
Nx

X

∑
x=x0

|ψ(x, t;v)|2
, (5)

where the vertical bars denote the moduli of the complex
function involved and, if it operates on complex-valued ψ
function, the quantity S is still a real-valued coherency
function. In the present case we have defined |ψ(vs; t0)|
as:

|ψ|=

√

Real2(ψ)+ Imag2(ψ). (6)

Simplex Method

The classical Simplex is adapted to our problem by making
the Semblance optimization object function. The Simplex
is often referenced to Nelder and Mead (1965), and it is
classified as a random controlled global search method,
and as being a direct search method, it does not carry
statistical operator relations.

The Simplex is based on four basic operations: reflection,
expansion, contraction and reduction in the parameter
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space, m. It is admitted that m(k)
i be the i-th vertice of

a polyhedron in the m space, and in the k-th optimization
iteration. The correspondent value of the object function of
minimization is called f (m(k)

i ), and after each iteration the
stop criterion is evaluated as, for instance, by the χ function
given in the form:

χ(m; t0) =

√

√

√

√

1
n+1

n+1

∑
i=1

[

S
(

m(k)
i ; t0

)

−S
(

c(k); t0
)

]2
≤ ε, (7)

that is the square root average of the deviations between

S(m(k)
i ; t0) and S(c(k); t0) calculated with respect to the

vertices of the centroid ck, and ε a small positive number
used as the stop criterion. The parameter space is defined
as m = vs.

Conjugate Gradient Method

The Gradient Method (GM) is defined as a Derivative
Local Search Method. As such, its application is rather
severe for obtaining plausible results due to the multimodal
characteristic of the object function of minimization, and
the is obtained solution will depend on a priori and
constraint information. The Conjugate Gradient is a
specific technique of the GMs, described in many textbooks
as by Fletcher (2001), and we follow Press et al. (2002) for
the computer program implementation.

The object function of minimization is defined as equation
(1), where the model function, t(x; t0,vs), is given by
equation (2), with vs = vrms and vint given by equations (8)
and (9):

vrms,n =

√

∑n
i=1 v2

int,i∆ti

∑n
i=1 ∆ti

→ vrms(t) =

√

1
t

∫ t

0
v2

int(τ)dτ, (8)

vint,n =

√

tn+1v2
rms,n+1 − tnv2

rms,n

tn+1 − tn
→ vint(t) =

√

d
dt

tv2
rms(t).

(9)
These equations are Durbaum-Dix transform referenced to
a n-th layer, or a n-th reflector, or a n-th interval velocity
vint,n, or a n-th vrms,n velocity, and for the condition of zero
offset.

Equations (8) and (9) are rewritten in discrete (nonuniform
intervals ∆ti) and continuous forms for interpretation of
their effects. In the continuous forms, the traveltime t
participates as a decaying factor in the calculus of vrms(t),
and as an amplification in the calculus of vint(t).

The transformation to depth of the micro-interval velocity,
vint,n ↔ v(zn), is calculated by equation:

zn = zn−1 +
1
2

vint,n [tn − tn−1] . (10)

A first observation with respect to the above discrete pair is
that the process is over the ∆t micro-intervals, establishing
a continuous calculation, without observing the interval
between two consecutive natural reflections. Therefore,
the effective source pulse should be a natural smoothing
operator. The length of the source pulse can be, for
instance, up to 10 points.

A second observation is that vrms is an integral average
value of the subsurface velocity sampled by the traveling
wave, therefore it must appear as a smooth function.

The third observation is that vint has the form of a derivative
of the squared vrms function, what makes vint very sensitive
to noise present in vrms. As a consequence, the calculus
of this derivative needs to be edited for unreal jumps in a
form of one more constraint to the process, and we have
included in the algorithm to detect jumps in vint,n over a
highest velocity allowed, vhigh = 5000m/s, and to proceed
with a NS point smoothing operator, for instance NS = 5,
depending on the analysis for the effective source pulse
made in the section.

Results and Conclusions

The obtained results are presented by the following
sequence of figures taken as examples: CMP sections,
Semblance interpretation sections, composite velocity
maps, stack, and migration.

The data used for the present test is the Marmousoft
seismic project. (Versteege and Grau, 1991).

An important point in the present optimization process is
the constraint model adopted, where the constraints were
imposed to the vint function. The process sweeps from left-
to-right across the the profile in a controlled form, where
some CMPs are used to initiate the loop process. In the
present example, we chose the first CMP (number 95)
to start the process, and ran across the profile up to the
last CMP (number 515), using only CMP with maximum
coverage. The total number of CMPs in the profile is 616.

One velocity function option implemented is described by
Ravve and Koren (2006a) and Ravve and Koren (2006b),
used to represent vrms(z) and vrms(t). The vrms(z) is given
by:

vrms(z) = v0 +∆v[1− e−
ka
∆v z]. (11)

∆v = v∞ − va, where v∞ is the asymptotic velocity as z →
∞, and va(x,y) is the local velocity at the reference point,
and ka the gradient for the exponential decay. The vrms(t)
counterpart, with t one-way traveltime is given by:

vrms(t) =
vav∞

va +∆ve−
kav∞

∆v t
(12)

One common observation is that the semblance map can
be interpreted as a linear-by-parts function. Therefore,
for the present examples, the constraint model adopted is
described by:

vrms(ti) = v0 + kt,iti, (i = 1,Ns), (13)

where Ns is the number of segments, usually 4 or 5, and
kt,i the respective segment gradient. We call attention to
the fact that the corners between the (i) segments of the
vrms function is a source of jumps in the vint(ti) function.

Implicit constraints are applied during the Global Search
with the Simplex method on the interval velocities (vint),
in order to limit the random search around a “global”
minimum. In the sequence of the process, the Gradient
is applied for the solution detail. Also, explicit constraints
are applied in the Global search in order to fix the solution
around considered known velocity values as, for instance,
the top weathering and water layers.
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Figure 2: Selected CMPs where the reflection hyperbolic
forms are clear.

Figure 2 shows the contents of CMP sections, where is
clear the “hyperbolic” reflection forms necessary to satisfy
the theoretical model.
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Figure 3: Semblance maps of the selected CMPs. The
green lines show the vrms, the yellow lines the vint, and
the red lines the Simplex explicit constraints on vint for the
automatic picking.

Figure 3 shows the automatic interpretations plotted
over the Semblance maps corresponding to Figure 2.
The maps show clearly the multi-valued characteristics
of the Semblance function, object of minimization, and
consequently the necessity for strong constraints and a
priori information. The green line indicate the vrms velocity,
the yellow line the vint velocity, and the red line the random
constraint imposed to the vint velocity for the global search.
The top and bottom of the Semblance maps show details
of the velocity constraints imposed with a constant value
and with a gradient, respectively. Model constraints should
to imposed be attend a geologically plausible solution.
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Figure 4: Semblance velocity maps obtained by the
automatic process: vrms ↔ vint.

Figure 4(a) presents the automatic time velocity models,
used on Figure 5(a) of the conventional stack, and on
Figure 5(b) for the Kirchhoff poststack time migration.

Figure 5(c) was obtained using the velocity model of Figure
4(b), and it was selected because it shows consistent
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results with the automatic semblance velocity models
transformed to depth.
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Figure 5: Conventional NMO stack, Kirchhoff time
migration and Kirchhoff depth migration. AGC gain was
applied with a window length of 0.5s to reveal weak events.
The velocity model used was of Figure 4.

As a first conclusion, the constraints on the interval
velocities should be strong, that means narrow band
around the expected value of vint(t,xCMP). The general
nonlinear optimization model constraints are fundamental
for a geologically plausible solution, since the Semblance
function show to be clearly multi-valued, and consequently
the necessity for a priori information.

Even though, the vrms(t,xCMP) function is smooth, the vint
function is very sensitive and give unreal jumps for small
variations of vrms, as shown in Figures 3, and there is
necessity of a jump detection and smoothing operators.

The depth migration were selected as final reference
conventional procedures, and not on the bases of physical-
geological analysis, for comparing the consistency of the
obtained velocity models.
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